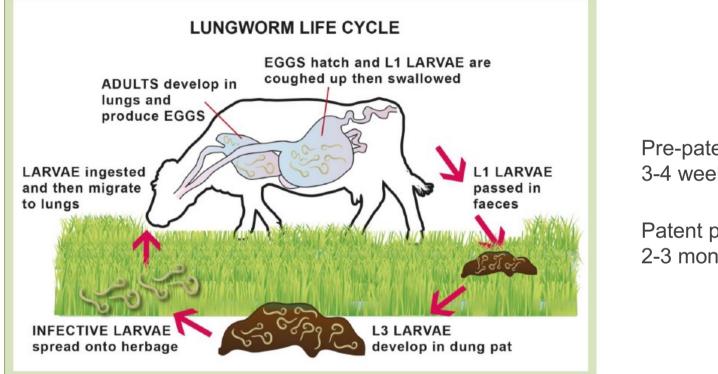


DEPARTMENT VIROLOGY, IMMUNOLOGY AND PARASITOLOGY RESEARCH GROUP PARASITOLOGY

TOWARDS DECISION SUPPORT FOR TREATMENT OF LUNGWORM INFECTIONS IN GRAZING CATTLE

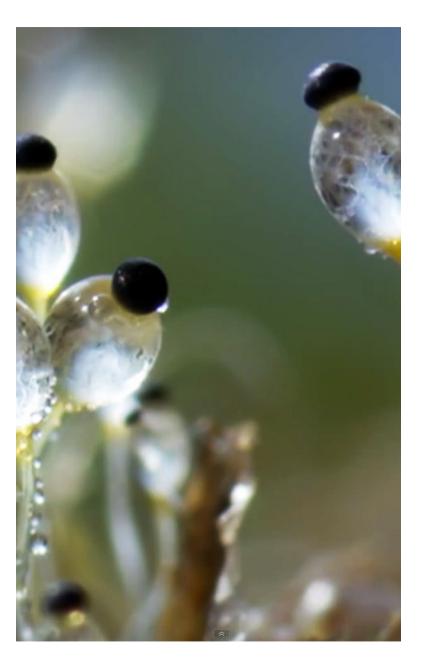
M. Vanhecke¹, J. Charlier², C. Strube³, <u>E. Claerebout¹</u> ¹Ghent University, Belgium; ²Kreavet, Belgium; ³TIHO Hannover, Germany



CONTENTS

- Epidemiology
- Pathology
- Effects on productivity
- Diagnosis
- Control
- Decision support

EPIDEMIOLOGY DICTYOCAULUS VIVIPARUS


L1 -> L3: 1-4 weeks

http://www.cattleparasites.org.uk

Pre-patent period 3-4 weeks

Patent period 2-3 months

- Rapid development of L1 to L3
 - Humidity needed
 - Temperature dependent
 - > 37°C no development
 - 20 25 °C: 3 to 5 days
 - 10 15 °C: 14 days
 - 5 °C: 26 days
 - < 0°C: no development</p>
 - Dispersal to neighboring fields through *Pilobolus*, rain, birds, insects, trampling...

Short survival time of L3

- Only weeks in summer
- Poor survival of winter

Rapid development of immunity

- Sufficient exposure needed
- Affects parasite development, fecundity and survival
- Immunity fades after 6-12 months in absence of re-infection

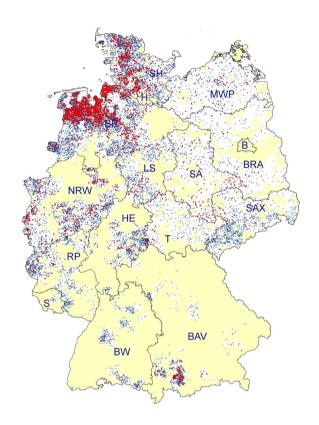
• Hypobiosis

- Induced by cold stimulus or immunity
- Hypobiotic larvae overwinter in the host, resume development next spring -> initial pasture contamination

Infection pressure

McLeonard & van Dijk, 2017. In Practice 39:408-419

Host immunity


www.hobbyfarms.com

EPIDEMIOLOGY-PREVALENCE

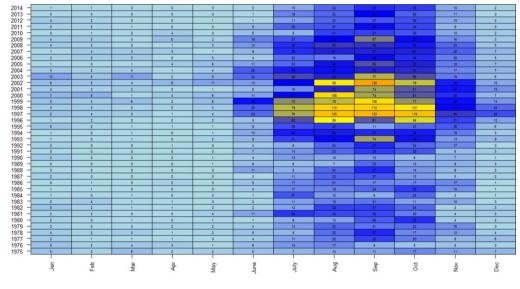
• Worldwide

- Europe: high prevalence in wet regions/years
 - Dairy cattle (bulk tank milk ELISA):
 - 9-21% (Belgium, Germany, Sweden)^{1,2,3,4}
 - Switzerland 3%⁵
 - Ireland 63%⁶
 - Netherlands 2.6-63%⁷
 - Higher prevalence with individual faecal or serum samples^{8,9,10}
 - UK: increasing incidence since 1990's¹¹

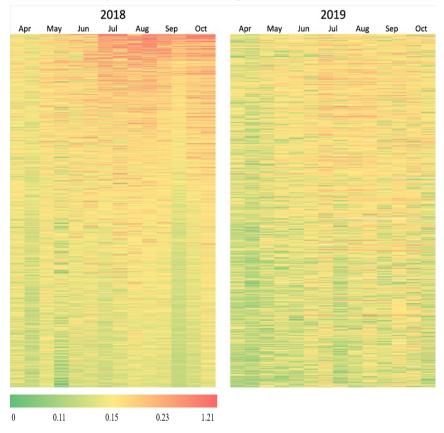
Schunn et al., 2013. PLoS One 8, e74429

¹Bennema et al., 2009. Vet Parasitol 165, 51–57; ²Klewer et al., 2012. Prev Vet Med 103, 243–245; ³Schunn et al., 2013. PLoS One 8, e74429 ; ⁴Höglund et al., 2010. Vet Parasitol 171, 293–299; ⁵Frey et al., 2018. Vet Parasitol 250, 52–59; ⁶Bloemhoff et al., 2015. Vet Parasitol 209, 108–116; ⁷Ploeger et al., 2014. Vet Parasitol 199, 50-58; ⁸Eysker et al., 1994. Vet Parasitol 53, 263-267 ; ⁹Ploeger et al., 2012. Vet Parasitol 185, 335-338 ; ¹⁰May et al., 2018. Parasit Vectors 11, 24; ¹¹McCarthy and van Dijk, 2020. Vet Rec 186, 642

EPIDEMIOLOGY-PREVALENCE

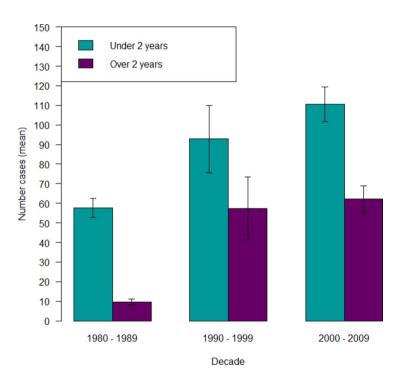

Worldwide

- North America: reports of presence & outbreaks^{1,2,3}
- South America (Costa Rica, Colombia, Brazil, Argentina): reported outbreaks, low prevalence (?)⁴⁻¹⁰
- Africa (Tanzania, Kenia, Ethiopia, Uganda, Ruanda): presence reported¹¹⁻¹³
- Asia (Malaysia): reported outbreaks, low prevalence¹⁴
- Australia: presence reported¹⁵
- New Zealand: widely present, limited clinical problems¹⁶


¹Gupta & Gibbs, 1969. Can Vet J 10, 279-285; ²Winters & Worley, 1975. Am J Vet Res 36, 327-329; ³Lyons et al., 1981. J Am Vet Med Assoc 179, 456-457; ⁴Jiménez et al., 2007. Vet Parasitol 148, 262-271; ⁵Jiménez et al., 2008. Vet Parasitol 154, 294-299; ⁶Chaparro et al., 2016. Parasite Epidemiol Control 14, 124-130; ⁷Molento et al., 2006. Vet Parasitol 141, 373-376; ⁸Henker et al., 2017. Acta Parasitol 62, 129-132; ⁹Fiel et al., 2011. Parasitol Res 109, S105-S112; ¹⁰de Macedo et al., 2021. Vet Parasitol Reg Stud Reports 26,100645; ¹¹Chartier C., 1990. Rev Elev Med Vet Pays Trop 43, 75-84; ¹¹Thamsborg et al., 1998. Trop Anim Health Prod 30, 93-96; ¹²Fesseha & Mathewos, 2021. J Parasitol Res 6637718; ¹³Lat-Lat et al., 2010. Trop Biomed 27, 236-40; ¹³Smeal et al., 1977. Aust Vet J 53, 566-573; ¹⁴Johnson et al., 2003. New Z Vet J 51, 93-98

Monthly distribution of lungworm cases in Great Britain 1975 to 2014 (rows).

McCarthy and van Dijk, 2020. Vet Rec 186, 642

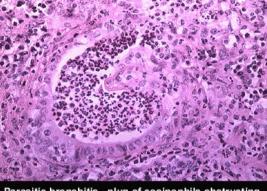

GHENT UNIVERSITY Distribution of the ODR values per sampling and farm in dairy farms in Belgium

Vanhecke et al., 2020. Vet Parasitol 288, 109280

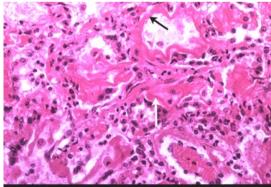
Different age classes

- Grazing young stock most susceptible
- Shift from young stock to adult cattle in Europe since 1990's^{1,2}
- Outbreak in adult dairy cattle in Brazil (Henker et al., 2016)³

McCarthy & Van Dijk, 2020. Vet Rec 186, 642



¹Ploeger, 2002 Trends Parasitol 18, 329-332; ²McCarthy & Van Dijk, 2020. Vet Rec. 186, 642; ³Henker et al., 2017. Acta Parasitol. 62, 129-132


PARASITIC BRONCHITIS (HUSK)

- Pathology caused by L4 and adult worms
 - Inflammation
 - Obstruction of bronchioles (larvae, epithelial cells, eosinophils, mucus)
 - Alveolar emphysema -> interstitial emphysema
 - Hyperphoea -> dysphoea -> oedema -> hyaline membranes
 - Aspiration pneumonia (worms, eggs)

http://cal.vet.upenn.edu

Parasitic bronchitis - plug of eosinophils obstructing small bronchiole with collapse of surrounding alveoli

Hyaline membranes (black and white arrows) lining the epithelial surfaces of alveoli

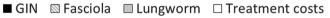
PARASITIC BRONCHITIS (HUSK)

• Clinical signs

- Coughing
- Hyperpnea -> dyspnoea
- Nasal discharge
- Mortality

Post-patent phase

- Recovery
- Complications
 - Alveolar epithelisation
 - Secondary infections
 - Re-infection syndrome (heavy infection in immune animals)



PRODUCTION LOSSES

- Clinical lungworm disease
 - Mortality
 - Reduced growth
 - Reduced milk production (€159-300/cow)^{1,2}
- Subclinical lungworm infections
 - Increased ODR interquartile range: -0.3 to -0.5 kg/cow/day³
 - Positive vs neg bulk tank milk: -0.17 to -1.7 kg/cow/day^{4,5}
 - Patent subclinical infection -1.6 kg/cow/day⁵
 - FGS calves: dose-dependent decrease in weight gain⁶

Annual cost (Europe) €139 million (€86-225 m)⁷

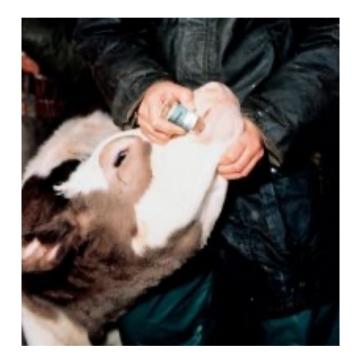
¹Holzhauer et al., 2011. Vet Rec 169, 494^{; 2} Woolley, 1997 Cattle Pract 5, 315–318; ³Charlier et al., 2016. Vet Parasitol 232, 36-42; ⁴Dank et al., 2016. J Dairy Sci 98, 7741–7747; ⁵May et al., 2018. Parasites Vectors 11:24; ⁶ Ploeger et al., 1990. Vet Parasitol.35, 307–322; ⁷Charlier et al., 2020. Prev Vet Med 182, 105103

Mehlhorn, 2008. https://doi.org/10.1007/978-3-540-48996-2_350

- Clinical signs
 - From 2-3 weeks pi^{1,2}
- Farm history
- Detection of L1 in faecal samples (Baermann)
 - From 3-4 weeks pi³
 - High sensitivity in calves (30g)³
 - Multiple (9 heifers or 15 cows)⁴ fresh samples, collected rectally
- Bronchoalveolar lavage
 - L1, eosinophils, Se 91%, Sp 85%⁵
- Autopsy
 - (pre-)adult worms in bronchi

¹Michel & McKenzie, 1965. Res Vet Sci 6, 344–395; ²Boon et al., 1984. Vet Parasitol 16, 261–272; ³Eysker, 1997. Vet Parasitol 69, 89-93; ⁴Ploeger et al., 2012. Vet Parasitol 184, 168–179; ⁵Lurier et al., 2018. Prev Vet Med 154, 124–131

DIAGNOSIS


- Detection of antibodies (serum, milk)
 - Individual serum or milk samples:
 - From 21-28 days (serum) or 30-46 days (milk) until 123-146 days p.i. (milk)^{1,2,3}
 - Individual serum samples from \geq 6 heifers or \geq 10 cows⁴
 - High Se 98% and Sp 98%³ (serum)
 - Bulk tank milk samples:
 - At least 20-30% of the herd seropositive^{1,3}
 - Low Se (50-83%)^{4,5,6}, especially when within-herd prevalence < 10% (Se 36%)⁵
 - Shorter and lower antibody response after re-infection⁷

GHENT 20 UNIVERSITY 24

¹Fiedor et al., 2009. Vet Parasitol 166, 255–261; ²Strube et al., 2017. Vet. Parasitol. 242, 47–53; ³Goździk et al., 2012. Res Vet Sci 93, 813–818; ⁴Ploeger et al., 2012. Vet Parasitol 184, 168–179; ⁵Ploeger et al., 2014. Vet Parasitol 199, 50-58; ⁶Charlier et al., 2016. Vet Parasitol 232, 36-42; ⁷Strube et al., 2017. Vet Parasitol 242, 47-53.

CONTROL

- Vaccination
 - Vaccine available in some countries
 - Living, irradiated L3
 - Two oral immunisations prior to turnout on infected pasture (booster infection required)
 - Don't combine with anthelmintic treatment
 - Solid protection for a full grazing season
 - Disadvantages: short shelf life (not user-friendly), no sterile immunity, no life-long protection

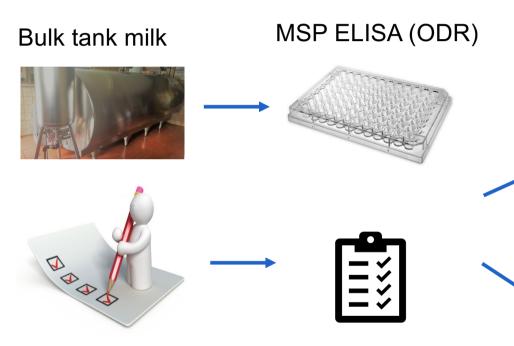
CONTROL

- Biosecurity and management: avoid risk factors
 - Frequent purchase of animals, introduction of lungworm-naïve animals in an infected herd or infected animals into a naïve herd¹⁻⁴
 - Not mowing or resting pasture (6 weeks) prior to cattle grazing^{4,5,7}
 - Long grazing season^{5,6}
 - Mixed grazing of different ages⁵
 - Over-treating young grazing stock⁷
 - (Semi)permanent water bodies⁸

¹Eysker et al., 1994. Vet Parasitol 53, 263-267; ²Holzhauer et al., 2003. Tijdschr Diergeneeskd 128, 174-178; ³Ploeger et al., 2012. Vet Parasitol 184, 168–179; ⁴Charlier et al., 2016. Vet Parasitol 233, 36-42; ⁵Schnieder et al., 1993. Vet Parasitol 47, 289-300; ⁶Höglund et al., 2004. Vet Parasitol 125, 343-352; ⁷Bloemhoff et al., 2015. Vet Parasitol 209, 108-116; ⁸Schunn et al., 2013. PLoS One 8, e74429

CONTROL

Anthelmintic treatment


- Levamisole, benzimidazoles: no persistent efficacy
- Macrocyclic lactones (ML): persistent efficacy 4-6 weeks
- Long-acting ML: persistent efficacy 84-150 days
- Anthelmintic boli: persistent efficacy 130-140 days
- Mainly therapeutic treatment after diagnosis of parasitic bronchitis^{1,2}
- Difficult to determine the optimal time and frequency of preventive or metaphylactic treatment³

- Associations with (future) infection levels
 - Previous exposure (antibody levels)?
 - Risk factors?
 - Weather conditions?

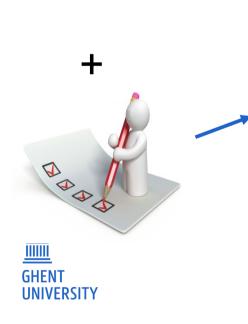
Questionnaire survey

Risk factors

Association with farmer-reported outbreaks?

Prediction of lungworm outbreaks?

Association with production losses?


Prediction of production losses?

GHENT UNIVERSITY

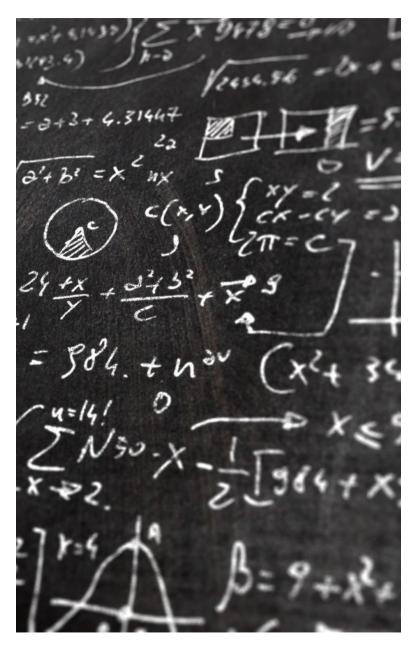
Higher risk for farmer-reported outbreak (2018-2019):

- ODR > 0.41 once (OR 2.0-3.4) or twice consecutively (OR 5.5-6.4)
- ODR > 0.41 in August (OR 3.7-4.2) or October (OR 2.7-2.6)
- Frequent purchase of animals: OR 2.0 (NS)
- Proportion of grazing season covered by anthelmintics: OR 2.8 (NS)

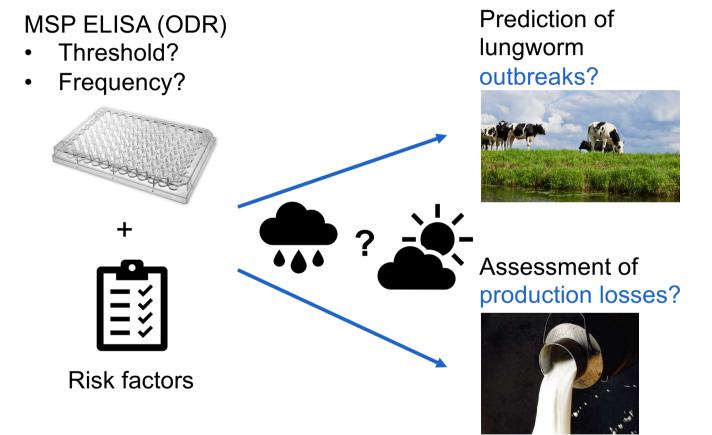
Vanhecke et al., 2020. Vet Parasitol 288, 109280

GHENT UNIVERSITY

Risk factors


- Purchase of new animals (OR 2.7)
- >50% of first grazing season
- covered by anthelmintics (OR 3.9)
- Mowing pastures (OR 0.57)

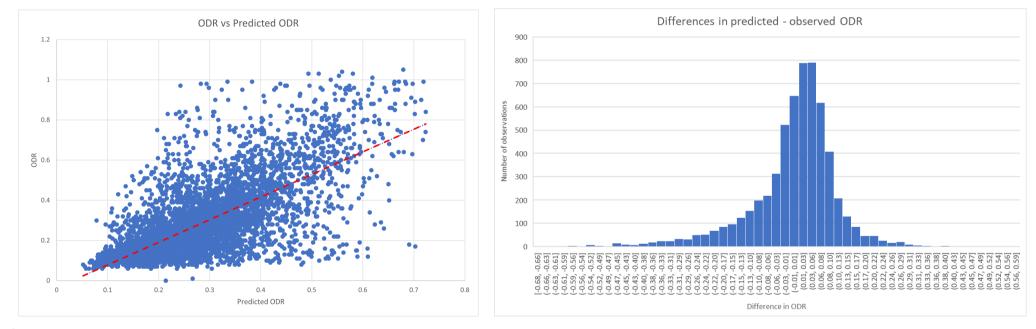
Milk production losses


- T-test between farms above and below threshold
 - ODR > 0.41 once: 0.17 to -0.70 kg/cow/d (NS)
 - ODR > 0.41 twice: 0.58 (NS) to -1.74 kg/cow/day
- Linear mixed effects model (2019)
 - ODR > 0.41 once: 0.48 kg/cow/d (NS)
 - ODR > 0.41 twice: -1.34 kg/cow/d
- No association between ODR in Aug, Sept or Oct and milk yield

Vanhecke et al., 2021. Vet Parasitol 292, 109414

- Substantial, but variable and not always significant, reduced milk yield in farms with one or at least two consecutive BTM samples > 0.41 ODR
- Repeated monitoring is necessary to identify herds at risk for lungworm-associated production losses.
- A cut-off of 0.41 ODR could be a possible threshold for production limiting infections.
- BUT
 - Confirmation needed in different conditions (year, weather, management)
 - Mitigating parasite-associated production losses does not always improve economic performance¹

- Associations meteorological data vs. ODR (2018)
- Random effects models: random intercept and random slope model Y = mx + b
- Variables: mean of 14 days, different lags between measurement of meteo data and ODR
 - ODR


GHENT UNIVERSITY

- Temperature 2 m (min., max., mean.)
- Temperature 1 cm deep (min., max., mean.)
- Temperature 1-2 m deep (min., max., mean.)
- Precipitation
- Evapotranspiration
- Solar radiation
- Number of warm days (> 8°C)
- Number of hot days (> 20°C)
 - Number of rainy days (> 2mm)

Moderate correlation (R> 0.6)

ODR ~ Month + Evap + Hot + Rain + Temp

GHENT UNIVERSITY

Vanhecke et al., 2021. 28th WAAVP Conference, Dublin, O-4020; Vanhecke et al., 2022. Int J Parasitol, under review

GHENT UNIVERSITY

- Improve association model
- Validate association model
 - Internal validation (bootstrap)
 - External validation
- Build prediction model
- Validate prediction model
 - Internal validation (bootstrap)
 - External validation

Edwin Claerebout

professor

LABORATORY FOR PARASITOLOGY

E Edwin.claerebout@ugent.be T +32 9 264 73 03

- f Universiteit Gent
- 🦉 @ugent
- @ @ugent
- in Ghent University

www.ugent.be
https://vetparasitology.ugent.be/

